Numerical Modeling of the Atmosphere with an Isentropic Vertical Coordinate

1990 ◽  
Vol 118 (10) ◽  
pp. 1933-1959 ◽  
Author(s):  
Yueh-Jiuan G. Hsu ◽  
Akio Arakawa
Author(s):  
Sergey Leble ◽  
Ekaterina Smirnova

Diagnostics and decomposition of atmospheric disturbances in a planar flow are considered and applied to numerical modeling results with the direct possibility to use in atmosphere monitoring especially in such strong events which follow magnetic storms. The study examines a situation in which the stationary equilibrium temperature of a gas may depend on a vertical coordinate, that seriously complicates the problem solution. The relations connecting perturbations for acoustic and entropy modes are analytically established and led to the solvable diagnostic equations. These perturbation structures, found as the equation solutions specify acoustic and entropy modes in an arbitrary stratified gas under the condition of stability. These time-independent diagnostic relations link gas perturbation variables of the acoustic and the entropy modes. Hence, they provide the ability to decompose the total vector of perturbations into acoustic and non-acoustic (entropy) parts uniquely at any instant within the all accessible heights range. As a prospective model, we consider the diagnostics at the height interval [120;180] km, where the equilibrium temperature of a gas depends linearly on the vertical coordinate. For such a heights range it is possible to proceed with analytical expressions for pressure and entropy perturbations of gas variables. Individual profiles of acoustic and entropy parts for some data, obtained by numerical experiment, are illustrated by the plots for the pure numerical data against ones obtained by the model. The total energy of a flow is determined for both approaches and its height profiles are compared.


Author(s):  
Sergey Leble ◽  
Ekaterina Smirnova

Diagnostics and decomposition of atmospheric disturbances in a planar flow are considered and applied to numerical modeling results with the direct possibility to use in atmosphere monitoring especially in such strong events which follow magnetic storms. The study examines a situation in which the stationary equilibrium temperature of a gas may depend on a vertical coordinate, that seriously complicates the problem solution. The relations connecting perturbations for acoustic and entropy modes are analytically established and led to the solvable diagnostic equations. These perturbation structures, found as the equation solutions specify acoustic and entropy modes in an arbitrary stratified gas under the condition of stability. These time-independent diagnostic relations link gas perturbation variables of the acoustic and the entropy modes. Hence, they provide the ability to decompose the total vector of perturbations into acoustic and non-acoustic (entropy) parts uniquely at any instant within the all accessible heights range. As a prospective model, we consider the diagnostics at the height interval [120;180] km, where the equilibrium temperature of a gas depends linearly on the vertical coordinate. For such a heights range it is possible to proceed with analytical expressions for pressure and entropy perturbations of gas variables. Individual profiles of acoustic and entropy parts for some data, obtained by numerical experiment, are illustrated by the plots for the pure numerical data against ones obtained by the model. The total energy of a flow is determined for both approaches and its height profiles are compared.


2007 ◽  
Author(s):  
T. Campbell ◽  
B. de Sonneville ◽  
L. Benedet ◽  
D. J. W. Walstra ◽  
C. W. Finkl

Author(s):  
D.S. Rakisheva ◽  
◽  
B.G. Mukanova ◽  
I.N. Modin ◽  
◽  
...  

Numerical modeling of the problem of dam monitoring by the Electrical Resistivity Tomography method is carried out. The mathematical model is based on integral equations with a partial Fourier transform with respect to one spatial variable. It is assumed that the measurement line is located across the dam longitude. To approximate the shape of the dam surface, the Radial Basic Functions method is applied. The influence of locations of the water-dam, dam-basement, basement-leakage boundaries with respect to the sounding installation, which is partially placed under the headwater, is studied. Numerical modeling is carried out for the following varied parameters: 1) water level at the headwater; 2) the height of the leak; 3) the depth of the leak; 4) position of the supply electrode; 5) water level and leaks positions are changing simultaneously. Modeling results are presented in the form of apparent resistivity curves, as it is customary in geophysical practice.


2015 ◽  
Vol 35 ◽  
pp. 232-235 ◽  
Author(s):  
Leonardo Piccinini ◽  
Paolo Fabbri ◽  
Marco Pola ◽  
Enrico Marcolongo ◽  
Alessia Rosignoli

2016 ◽  
Vol 41 ◽  
pp. 10-13 ◽  
Author(s):  
Luca Alberti ◽  
Martino Cantone ◽  
Silvia Lombi ◽  
Alessandra Piana

Sign in / Sign up

Export Citation Format

Share Document